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Abstract 

It is shown that the predictive and nonpredictive stochastic complexities relative to the class of finite-state 

models are asymptotically equivalent in a probabilistic sense. To this end, a universal, sequential, noiseless 

coding scheme attaining the minimum description length (MDL) of the data with respect to this class is 

presented and investigated. It relies on an MDL-based estimator of the model structure, which is proved to 

be strongly consistent. An interpretation of this result is that a process ‘close’ to every process in the class, 

regardless of the model structure, can be constructed. This universal process can be employed in the 

solution of sequential decision problems like coding, prediction, and gambling, in an asymptotically 

optimal manner. 
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1. Introduction 

In this work, we consider the parametrization of discrete random processes in terms 

of finite-state (FS) models. The broad class of FS models, which includes Markov 

models as a special case, is flexible and rich, and so it has extensively been used for 

modeling the data in various applications; one such application, that will draw special 

attention in this paper, is data compression (Davisson, 1983; Rissanen, 1986b; Wein- 

berger et al., 1992). In many cases it seems plausible that an observed data sequence 

over a discrete alphabet can be ‘explained’ as a sample of some FS process, and for this 
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matter it is interesting to estimate the model in the class that fits best this data. This 

model estimation problem is one of the concerns of this paper. Roughly speaking (a 

formal definition of this class is given in Section 2), it involves the estimation of 

a model structure (and, particularly, a model order), namely an FS machine, and of the 

model parameters. 

Estimating the model parameters when the supporting FS machine F is known is 

straightforward. Classical statistical methods can be used; the maximum-likelihood 

(ML) estimates of the parameters are the empirical probabilities, and the estimation 

error in this case can be evaluated by, say, the Cramer-Rao lower bound. However, 

the estimation of the structure leads to conceptual problems. The ML criterion for 

estimating it is clearly unacceptable, since the likelihood of the data can only increase 

as the number of states in F increases. Similar phenomena of model order estimation 

have been observed and considered in many modeling problems, e.g., Gaussian AR 

and ARMA models. A common technique for model order estimation is to optimize 

an expression composed of the likelihood and a ‘penalty’ term for the number 

of parameters, to compensate over-parametrization. Now, some of the proposed 

criteria and penalty terms are ad hoc, and some, like Akaike’s criterion (Akaike, 1974) 

are asymptotically inconsistent. Other approaches for estimating F are based 

on decision theory (e.g. Whittle, 1952; Anderson, 1963); one such recent decision 

theoretic approach (Merhav et al., 1989; Ziv and Merhav, 1992) might be, again, 

inconsistent. 

A particularly interesting approach for estimating the model structure is the 

minimum description length (MDL) principle (Rissanen, 1983). In its basic form it 

states that the chosen model should minimize the number of bits needed to describe 

both the model and the data in terms of this model. It can be shown that, asymp- 

totically, this amounts to minimizing an expression composed of the normalized 

likelihood and a penalty term of the form OS&-’ log n, where K is the number of free 

parameters in the model, and n is the data length (a formally similar criterion was 

independently proposed by Schwartz (1978)). Although the idea behind this principle is 

fitting probabilistic models to individual sequences, rather than estimating an under- 

lying (unknown) distribution, it can be applied in a probabilistic environment thus 

raising the issue of consistency. Moreover, one cannot argue that a particular way of 

describing the data is optimal, except in a probabilistic setting, where a lower bound 

on the expected code length is available (Rissanen, 1984). Now, while the consistency 

of the MDL estimator was shown for AR (Hannan and Quinn, 1973) and ARMA 

models, and the rate at which the corresponding error probability tends to zero was 

investigated, no such results are available for the class of FS models. One of the results 

of this paper is a strong consistency proof for an MDL-based estimator and further 

properties of its error probability for this class of models. We note that, recently, 

Kieffer (1993) proved strong consistency results for an MDL-based model class 

selection rule which apply to a broad class of models, including FS ones, provided 

a ‘nesting’ property is satisfied (i.e. each class is contained in the subsequent classes). 
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This rule uses a penalty term larger than the one given by the MDL. Furthermore, FS 

models satisfy the nesting requirements only if we consider all models with the same 

cardinality as a single model class. Therefore, unlike our results, this procedure can be 

used to estimate only the order of the model, rather than its full structure. We also 

note that the strong consistency of an estimator for the structure of a Markov chain 

with a bounded number of states is reported in Rudich (1985). 

However, the scope of this paper is broader than the consistency of the MDL 

estimator for the class of FS models. The MDL principle is closely related to the 

notion of stochastic complexity of a data string, defined as the shortest description of 

this string in terms of the models in a given class (Rissanen, 1983; Rissanen, 1986a). 

A nonpredictive notion of stochastic complexity results from a description using 

a ‘two-part’ code, in which the parameters are explicitly encoded, and then followed 

by a codeword describing the data in terms of these parameters. This complexity is the 

minimal value attained by the goal function used in the definition of the MDL 

criterion. Rissanen (1986a) has introduced additional notions of stochastic complex- 

ity, namely semi-predictive and (fully) predictive complexities, according to increasing 

degrees of sequentiality in the scheme used to encode the data. In the semi-predictive 

complexity, the model parameters used to encode the data are determined sequen- 

tially, but a prescan step is still needed since the supporting machine F is determined 

from the whole data. In the fully predictive complexity both the machine and the 

parameters are determined sequentially so that the number of parameters in the fitted 

models is penalized without any explicitly added terms, which have only an asymp- 

totic meaning (see Section 2). This property makes the predictive approach especially 

suited for modeling finite sequences. It was conjectured by Rissanen (1986a) that all 

these definitions of the stochastic complexity are asymptotically equivalent, up to 

terms of O(n r ), at least in a probabilistic sense. This property is essential in order to 

consider a unique concept of ‘minimum description length’. One step in the corrobor- 

ation of this conjecture was taken by Rissanen (1986b), who proved that for the class 

of FS models the semi-predictive and nonpredictive stochastic complexities are 

equivalent. The main contribution of this paper is in proving this conjecture in full for 

the FS class of models in a probabilistic setting, where the data is assumed to be 

a sample of an FS process. In this setting, it turns out that all the definitions of the 

stochastic complexity tend, up to O(n- ‘) terms, to the optimal expected code length 

achievable by any algorithm used to encode the data. 

The proof of the main result, in Section 3, is based on the observation that any 

model estimator obtained from the so far processed sequence x’;, whose probability of 

error in determining the underlying FS model tends to zero fast enough, can be used 

for sequential coding of Xi + I, and the resulting expected code length will be minimum 

(i.e. the stochastic complexity) up to an O(n-‘) term. Now, since an MDL-based 

estimator is used in this fully sequential scheme, the consistency of this estimator is 

shown, and further properties of its error probability are analyzed, as a step in the 

course of proving this main result. 
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In many applications sequentiality is, of course, a desirable property of a data 

compression scheme. But this is not the only appealing property of the predictive 

nature of this approach to stochastic complexity. The main result of this paper can be 

interpreted in an alternative way: it shows the existence of a universal process that is 

‘close’ to any process generated by an FS model (and even specifies it). Specifically, the 

predictive stochastic complexity corresponds to a fully sequential universal scheme for 

coding the data. As such, it induces a probability distribution for the next outcome 

given the past string. Suppose we define a stochastic process such that the probability 

it assigns to each string is the product, along the time indices, of the conditional 

probabilities induced by the coding scheme used in the definition of the predictive 

complexity. Our results imply that the maximal log-likelihood assigned to that string 

by any FS model is only better by an O(log n) term (on the average and a.s.) than the 

log-likelihood induced by the coding process of the predictive complexity. Since this 

term represents the minimal possible deviation (given by the lower bound (Rissanen, 

1984)), this can be considered as a universal process in the class of FS models. While 

the idea of universal probability goes back to Solomonoff (1964) and Kolmogorov 

(1965), the specific notion and its relation to the stochastic complexity has been 

presented by Weinberger et al. (1993), who provided such a universal probability for 

a more restricted class of tree sources. Such universal processes can be used not only 

for universal coding and prediction (Rissanen, 1984; Weinberger et al., 1993), but also 

for other sequential decision problems like gambling (Feder, 1991) as well. These ideas 

are further discussed in Section 4. 

2. Predictive stochastic complexity for finite-state models 

A unifilar FS probabilistic source % over a discrete alphabet A of c( letters, is defined 

by an FS machine F on a state space S of finite cardinality k, and an (H - l)k-vector of 

parameters 0 given by the k probability measures p(alz), aEA, ZES. The transitions 

between states of S are determined by a ‘next-state’ functionfthat maps S x A into S, 

together with a given initial state zo. The probability that a string x; =x1 x2 ... x,, 

XiE A, 1 < i < n, be emitted by % is given by 

p(xY,X)= fi P(Xilzi-IX Zi’f(Zi_,,Xi), lQi<n. 
i=l 

In this work, P(X;; 55) is called an FS process, and the pair % = (F, 0) is referred to as 

the model. An FS machine can be illustrated as a directed graph with k vertices 

corresponding to the states and with edges corresponding to the allowable state 

transitions dictated by 1: Thus, we assume CI outgoing edges from each vertex. We 

further assume that the model is irreducible and aperiodic (i.e. the process is ergodic) 

(Cox and Miller, 1967, p. 101). The machine F is also denoted by the quadruple 

(S, k,A zo), where k= (Sj. The per-symbol entropy of P(Xy;%) is denoted by H,,(E). 
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In this section we review the various definitions of the stochastic complexity for FS 

models, and describe the model estimation problem which is inherent in the definition 

of the predictive complexity. Consider an FS model X = (F, 0) that generates a process 

P(X;; 3), with F =(S, k, f; zO). Hereafter, we assume that F is a minimal machine, in 

the sense that no model with fewer states generates the same process. Since the 

definition of the predictive complexity involves algorithms that estimate sequentially 

an FS model from the data, it is necessary to establish the uniqueness of F. We begin 

with a preliminary discussion of this issue. 

Specifically, we show in Lemma 1 and its Corollary below, the uniqueness (up to 

a permutation) of a minimal machine that supports an FS model. Note that this claim 

does not hold for nonunifilar sources (see Blackwell and Koopmans, 1957). To state 

Lemma 1 we define, following Feder et al. (1992) a refinement F’ of F as another 

machine (S’, k’, f’, zb) satisfying zi = g(z:) for every emitted sequence xf and every i 3 0, 

where (z:} is the sequence of states defined byf’ and zb, and g( .) is some function S+S. 

Lemma 1. Given two FS models dejning the same process, let F and F’ denote the 

corresponding jnite-state machines and assume that F is minimal. Then F’ is a rejine- 

ment sf F. 

Proof. Call two states in a model equivalent if the two models obtained by starting 

emission at these states define the same process. Two distinct states s and z in the 

supporting set S of F cannot be equivalent, for otherwise deleting state s from S and 

redirecting all its incident edges to z, we obtain a model that defines the same process, 

thus contradicting the minimality of F. Consider two paths over F’ leading from its 

initial state zb to the same state z’. The corresponding paths over F starting at its 

initial state zO, which exist since the two models define the same process, lead to the 

same final state defined to be g(z’), for otherwise S would contain distinct equivalent 

states. In particular, if zb is reachable from itself, we have g(zb)=z,,, for otherwise 

S would contain two equivalent states g(zb) and zO. If it is not reachable, define 

g(zb)Azo. Then, for any emitted sequence xi, i30, by the definition of g( .) we have 

zi=g(z;), where {zi} and {z;} are the sequences of states defined by F and F’, 

respectively. Therefore, g( .) defines a refinement F’ of F. 0 

Clearly, if F is a minimal machine then every state in its supporting set S is 

reachable from the initial state z. (except, possibly z. itself). Thus, if the supporting set 

of F’ has the same cardinality k, then the mapping g( .) in the proof of Lemma 1 is 

one-to-one. That proof also implies a one-to-one correspondence between the edges of 

F and F’. Hence, we obtain the following corollary. 

Corollary. The minimal machine generating an FS process is unique up to a permutation. 

We proceed now and review the various notions of stochastic complexity for FS 

models. The corresponding definitions involve empirical probability measures and 
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empirical entropies derived from a-ary sequences, for which we introduce the follow- 

ing notation. Given an a-ary sequence xl, let z; denote the sequence of states 

generated by F. For every ZES and UEA, let 

,Uj(ZU) ’ i 6(Zi- 1) Z; Xi, U), 
i=l 

where 

fJ(Zi_lyZ;xiya)’ 
1 if Zi_l=Z and Xi=a, 

0 otherwise, 

denote the number of times that an a occurred at state z. An empirical measure over 

S x A is given by 

a P&4 P,(zu) = y-’ 

and the corresponding measure on A, conditioned on ZES, relative to x7 is 

if Le.4 P” (zu) = 0, 

&(a 1 z) 4 
&(z4 

otherwise. 

Ca&4 p^. (4 

This measure defines the maximum-likelihood model supported by F, i.e. 

where %=(F, 8) and hereafter the logarithm base is 2. I it is well known that this 

minimal value is n fi(x’j 1 F), where E?(xlI F) is the conditional entropy with respect to 

F of this measure, namely 

Consequently, the probability assigned by the empirical measure to the entire 

sequence is 2-“‘@; IF) , and this is the maximal probability that can be assigned to that 

sequence with a supporting machine F. 

The nonpredictive stochastic complexity (Rissanen, 1983) of an cr-ary sequence x; in 

the class of FS models, defined as the shortest description length of xl in terms of the 

models in the class, is given, up to O(1) terms, by 

lNp(x;) A min 
(a-1)k 

k, F, 0 
-logP(x;;X)+ 2 ---log@+ 1) 

=y’,” nZ?(x;lF)+ 
’ i 

(a-1)k 
-----log@+ 1) 2 , (2) 
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where the first minimum is taken over all FS models X=(F, 0) on a set of k states for 

all k, and the equality follows from (1). This formula results from a particular way of 

encoding the data, with a ‘batch’ universal encoder that sends as a header the 

empirical counts in each state of the model, and then assigns to the data a code 

matched to the empirical probabilities. The first term in the right-hand side of (2) 

represents the cost of encoding the data given the counts, the second term represents 

the cost of encoding the counts, and the cost of encoding the machine is independent 

of n. Nevertheless, it can be shown (Rissanen, 1986b, Theorem 1) that (2) represents 

(on the average) the minimum description length of the sequence x7, assumed to be 

a sample of an FS process, using any noiseless code. 

While the above definition of stochastic complexity involves (possibly) batch codes, 

a partial step in the sequential formulation of the problem is considering the descrip- 

tion length of the sequence x; when the parameters are estimated sequentially but the 

machine is still estimated from the entire data. Formally, for a given FS model, let e(i) 

be an estimator of the vector of parameters 0 based on a sample of length i. The (semi-) 

predictive stochastic complexity of an cc-ary sequence x; relative to the class of FS 

models and to 8( .) is defined (Rissanen, 1986a, b) as 

’ i 

n-1 
'SP(xY)ay;" - C lOgtii(Xi+lIZi)+lOg*j+C , 

i=O I 
where 

the minimum is taken over all finite-state machines F on a set of k states, and 

all k; 
z. is the initial state for F and z;- ’ . IS the sequence of states associated with x; 

and F; 
Gi(. 1.) is the transition probability induced by b(i); 

j denotes the index of F when all FS machines are ordered in such a way that 

a machine with fewer states precedes another with more states; 

log*kAlogk+loglogk+..., thf sum including all the positive iterates; and 

c is the constant log c,‘?=i 22’Og j, which forces the code lengths for the indices j 

to satisfy the Kraft inequality (with equality), and thus to correspond to a uniquely 

decodable code. 

In (3), 8(i) is computed in a predictive way, but the optimizing machine F is not. The 

term log* j+c can be shown to be the length of the header needed to encode the 

machine, while -log Ji(Xi+ 1 1 zi) is the ideal code length assigned to Xi+ 1 based on the 

estimate of the parameters at time i, given the machine. 

Now, for a given F, let e( .) be the Laplace estimator, namely 
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Then it is shown in (Rissanen, 1986b, Theorem 2) that for every FS model 57 = (F, 0) 

such that the components of 8 are bounded away from 0 and 1, we have 

where E’j-[ .] denotes expectation relative to the process P(X;; %), and H,,(Z) denotes 

the corresponding per-symbol binary entropy of strings of length n. Moreover, it was 

shown by Krichevsky and Trofimov (1981) that with the modified estimator 

ei(UIZ)=P:(aIZ)~ 
cli (za) + 1/2 

LcA b(za) + d2 

we obtain, for every individual sequence x;, 

(a- 1)k ;r,,(x;)<Fi(x; IF)+--- 2n logn+O(n-1). 

(4) 

Hence, with this new choice of e( .), the (semi-) predictive stochastic complexity 

deviates from the non-predictive complexity by no more than O(n-‘) per symbol. 

Note that P;(. 1.) differs both from the maximum-likelihood measure P^,( .I . ) and from 

Laplace measure Pi(. I .). Like the latter, it results from averaging 8 over the whole 

parameter space, but instead of using a uniform prior, it is based on one that 

emphasizes the values situated along the boundary. 

The most interesting case is a fully predictive one where, in addition to the 

parameters, the model is also estimated sequentially, and thus a third, fully predictive, 

measure of complexity l,(x;) suggested by Rissanen (1986a) can be defined. Let (g(i), 

e(i)) be an FS model estimator based on a sample of length i, and letx, i(i), and &(i), 

denote the corresponding next-state function, cardinality, and initial state, respec- 

tively. The predictive stochastic complexity of x’j relative to the class of FS models and 

to the model estimator (F^( .), 8( .)), is defined as 

n-l 

1,(X:) ’ - 1 lOgJi(Xi+l I z*i), 
i=O 

(6) 

where ki is the state at time i generated by the estimated machine, that evolves 

recursively according to ~(z*i _ 1, xi). Thus, e^,(xi + 1 Ifi) is a probability that depends 

only on the past outcomes, and hence it defines an FS-generated process whose 

universality with respect to the FS processes is discussed in Section 4. 

The various notions of complexity defined above apply to individual strings of data 

and can be formulated without assuming the existence of an underlying probability 

distribution. In the following, however, the data is assumed to be a sample of an 

(unknown) FS process. In this setting, we show in Section 3 the asymptotic equiva- 

lence between these complexities. Specifically, it is shown that all the definitions of the 

stochastic complexity tend to H,( % ) + [(IX - 1)k log n]/2n, up to O(n- ‘) terms, both 
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on the average and almost surely. Note that the various definitions of the stochastic 

complexity correspond to various coding algorithms, and following the lower bound 

obtained by Rissanen (1984), [(CC- 1)k log n]/2n is the optimal rate of convergence of 

the expected code length of any algorithm to the entropy. It turns out that this 

asymptotic equivalence is related to the consistency of the estimator p: intuitively, if 

this estimator is strongly consistent, it eventually provides, with high probability, the 

true underlying FS machine. From that instant there is no additional cost for coding 

using an incorrect model. Furthermore, if its error probability vanishes fast enough, 

the extra coding cost for the period until the true model is estimated correctly, is also 

small. We provide a suitable estimator, possessing these properties, by slightly 

modifying the MDL estimator, which is given by the minimizing FS machines of (2) or 

(3). It is an open problem whether such results can be proved using the MDL 

estimator itself. 

In the sequel, we assume that ~i(. / .) equals either Laplace’s Pi(. 1.) or Krichevsky 

and Trofimov’s P;(. 1.) estimators. Since our main result holds in an average sense, 

these estimators (as well as any other estimator obtained using reasonable priors) are 

equivalent. The extension of this result to almost sure convergence requires restricting 

$i to be Pi. 

3. The main result 

In this section, we compare between the average values of the predictive complexity 

(6) and the (semi-)predictive complexity (3), and establish their asymptotic equiva- 

lence. It is conjectured by Rissanen (1986b) that if F^(i) is taken as the minimizing FS 

machine that defines Is,(xi) in (2) or (3) (MDL estimator), then these complexities 

differ, on the average, by no more than O(n- ‘) per symbol. The main result of this 

paper, stated in Theorem 1 below, is that when the initial state for every FS machine 

F is assumed to be a unique, known state (i.e., when the next-state functions of two 

distinct models in the class with equal parameter vectors differ by more than a permu- 

tation), this conjecture holds with a slight modification of the estimator used. 

Theorem 1. Let the estimator 

F(i) g arg min 
{ 

ti(xi 1 M) + 
2Ca 1 Z 1 log(i + 1) 

M i I2 
(7) 

where the minimum is taken over all FS machines M on a set of states Z and 

c> 1+0.5dI-I, be used for defining the predictive stochastic complexity 1,(x:) of 

a sequence . Then, X k states, 
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and, consequently, 

n 

Note that the difference between the ‘penalty term’ in (7) and the one used in the 

asymptotic version of the MDL criterion is only in the multiplying constant (which is 

0.5 (@ - 1) 1 Z 1 for MDL), and not in its functional behavior. In particular, unlike the 

criterion proposed by Kieffer (1993), there is an explicit linear penalty for the number 

of parameters. 

Theorem 1 follows from Lemmas 2 and 3 below. Lemma 2 states that in order to 

establish the asymptotic equivalence (8) it is sufficient that the probability of error in 

estimating the machine F tend to zero fast enough, while Lemma 3 shows that the 

estimator (7) has this desired property. To state these lemmas, define the probability of 

error in determining the model, based on the observations xf up to time i, as 

where 

P,,,,,(i) 4 c P(xZ ; a 
X;EB 

BA {x;EA”: F^(i)#F} 

is the error event, and P( .; X) is the probability measure defined by the true underlying 
F and B over A”. By the corollary to Lemma 1, B is a well-defined set. 

Lemma 2 [Weinberger et al. (1992), Theorem 4(a)]. A sujfficient condition for (8) is 

fp ,,,,,(i) log i < 02. 
i=l 

(9) 

Although Theorem 4 of Weinberger et al. (1992) was proved for the more restricted 

class of FSMX models, the proof is equally valid for the class of FS models. In the 

FSMX case, P,,,,,(i) is the prob a 11 y b’l’t of making an error in the estimation of the 

specijc state Zi, rather than in the estimation of the whole structure of the finite-state 

machine F. It follows from Lemma 2 that we need to investigate not only the 

asymptotic consistency of F^( .) but also the rate at which P,,,,,(i) approaches zero. 

Lemma 3 states that the model estimator (7) satisfies (9). 

Lemma 3. If the model estimator F^(i) is defined by (7), then (9) holds for every FS model 
X = (F, 0). 

Remark. By Lemma 3, the sequence P,,,,, (i) is summable. Therefore, by the 

Borel-Cantelli lemma, P(i) is a strongly consistent estimator for F. Moreover, with 

similar arguments one can easily prove that when 6; = Pi, equation (8) holds also in an 

almost sure sense, i.e. the semi-predictive and the predictive complexities are equal 
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with probability one. It seems plausible (Finesso, 1993) that using a law of iterated 

logarithm, this strong consistency can be proved for any estimator with a penalty term 

that vanishes at a rate slower than O((loglogn)/n). This would match the result 

proved by Hannan and Qinn (1979) for AR processes. However, deriving this law for 

the class of FS processes requires further investigation. Moreover, this method would 

not provide a bound similar to Lemma 3 on the rate at which the probability of error 

vanishes and, therefore, it would not be sufficient to derive (8) in Theorem 1. 

Proof of Lemma 3. Let PM(i) denote the probability that the estimate F^(i) of 

F =(S, k, zo) 

P,(i)A c P(x;;%“), 
Xi, EBM 

where 

BwA {x’;EA”: F^(i)=Mj. 

The main idea in this proof is to distinguish between the cases where the estimated 

machine M is a refinement of the true machine F or it is not. The former is an 

overparametrization case and is handled by the penalty term. The latter yields 

a model that does not fit the data and, therefore, is handled using large deviations 

techniques. However, the infiniteness of the number of refined and nonrefined 

machines M poses a problem when summing over all the cases. We cope with this 

problem by using a rough technique to rule out, first, machines with a very large 

number of states (namely q > 4crk), so that only finitely many machines remain. Thus, 

let 

and 

Pd4. 
q<4ak. M#F 

Clearly, P,,,,,(i)= Pl(i)+P2(i). Hence, it suffices to prove that 

and 

f P,(i)logi<co. 
i=l 

First, assume q 2 4ctk. Under criterion (7), we have 

(10) 

(11) 

Bw~ x;d: E?(x’; IF)--t?(x; 1 M)a 2Cc&-k)ldi+ 1) 
i 

M. (12) 
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Therefore, the criterion involves a comparison between the maximum likelihoods 

under F and M, with a penalty term that tends to zero as O(i-’ log i). With the 

convention 0 log 0 A 0, we have 

logP(x’;;%)=i 1 1 P^+Z)logp(aIz) 
ZSS UEA 

= i zTs [ aTA Pi(za) C Fi(a I z, loi% PCs I z, 
OEA 1 

di C C P^i(ZU) C Fi(aIZ)lOgPi(aIZ) =-ii?(XfIF),(13) 
IES [ CIEA OEA 1 

where we have used Gibbs’ inequality. By (12) and (13) it follows that 

p,(i)< C 2-ifi(x;IF)< 1 2-iB(x;lM)--ZCa(q-k)log(i+l) 

XiEBL X;EA’ 

<(j+ I)-Wek’ (14) 

Next, we use the method of types to show that the sum on the right-hand side of (14) 

grows polynomially fast with i. Let @(xi) denote the q x CI matrix whose entries are 

pi(za), ZEZ, SEA. The set T(x’;) of all sequences in A’ having the same matrix @( .) as 

xf is referred to as the FS-type of xi relative to M. Let zM denote the set of distinct 

FS-types relative to M. For a type TEZ.,,,, let 1 TI denote its cardinality, let E?(TI M) 

denote the empirical conditional entropy with respect to M of the sequences 

in T (which depends on the sequence only through its type), and let QT( .) denote 

the empirical probability measure implied on A’ by the counts associated with T. 

Consequently, 

By (13), for every y\ET we have Q,(Y’;)=~-“(~‘~). Thus, for any TET~, 

12 1 QT(yl;)= I T(2-iB(rfM), 
Y;ET 

implying, by (15), 

xzA1 2 - ‘A(xtIM)<l5~l<(j+l)aq. 

Therefore, (14) takes the form 

(15) 

p,(j)<(j+ l)-aWq-2Ck-d (16) 
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In addition, it is easy to see that P,(i)=0 for q> i. Since there are no more than 

(q+ 1y4 distinct machines of cardinality q (in fact, this number includes permuted 

machines and reducible chains), it follows from (16) that 

pi(i)< i (q+l)aq (i+ l)-a(ZCq-2Ck-q)< f: (i+ l)-Za[(C--l)q-Ckl 
q=4ak q=4ak 

<i.(i+ l)- Za[(C-1)4ak-Ck]<(i+l)-Zka[(C-1)4a-Cl+1 

<(i+ 1) 2ka(l-O.SU-‘)+l <(i+ 1)~(2a_l)+l <(i+ 1)-2, 
(17) 

where we have used the inequalities C > 1 +O.~C(-‘, k 3 1 and CI 22. Clearly, (17) 

implies (10). 

As for (1 l), since the number of distinct FS machines with less than 4ak states is 

bounded and independent of i, it suffices to show that 

f P,(i)logi<cc 
i=l 

(18) 

for every machine M of cardinality q <4ak, M # F. First, assume that M is not 

a refinement of F. We have 

BM~ x;EA’: fi(xi, 1 M)-ti(x’; 1 F)< 
2CM(k-q)log(i+ 1) 

i 

Since the right-hand side of the inequality defining B;I, tends to zero as i tends to 

infinity, it suffices to prove (18) for the probability of the set 

{x;EA’: I?(x’; 1 M)-E?(x; 1 F)<E} 

for some E >O depending on F and M but not on i. This is stated by the following 

lemma. 

Lemma 4. Given an ergodic FS model %= (F, B), consider another ergodic FS model x’, 
whose FS machine M is not a refinement of F and is characterized by a next-state 

function that is not a permutation of the next-state function of F. Then, there exists 
a constant 6 >O, that depends only on 2” and x’, such that for evry E < 6 

limsupflogP{x;EA’: E?(xi 1 M)-I?(x’; I F)d&;Xt^)<O. 
i+ca 

(19) 

The proof of Lemma 4 is given in the appendix and it uses large deviations 

techniques. 

Next, assume that M is a (proper) refinement of F, given by a function d: Z-S. 
Thus, q>k and the error set BM satisfies (12). For every ZES, let Zs (z) denote the 

subset of Z of cardinality q(z) whose states s satisfy d(s) = z. Finally, let S(Z) denote the 
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set of the 1 states z of S for which q(z)> 1. Clearly, 

1 q(z)=q-k+l. 
zeS(Z) 

For every ZES define 

(20) 

F(a I s) 
dig 1 1 P^i(SU)lOg& 

as‘4 seZ,(z) Pi(a I z)’ 

By the refinement property, we have 

H(Xt 1 F)-E?(X’; 1 M)= 1 A i(Z), 
zsS(Z) 

implying, by (20), 

B,c 
i 
x’;d’: Ai 

2Ca(q - k)q(z)log(i + 1) 

(q-k+l)i 
for some ZES(Z) 

I 
. 

Hence, 

P&1’)< c p di(Z)~2Cdl(q-k)q(z)10g(i+1); g- h c P,(i). 1 (q-k+& I 
(21) 

ZES(Z) ZES(Z) 

In order to upper-bound P,(i), ZES(Z), we define a machine M’(z) on a set Z’(z) of 

q-q(z)+ 1 states, obtained from M by deleting all the states of Z,(z) except an 

arbitrary one, which is also denoted by z, and by redirecting to z all the edges incident 

at the deleted states. The initial state for M’(z) is zo(M), in case it has not been deleted, 

or z otherwise. Since M’(z) is still a refinement of F (for which the newly defined z is the 

only state whose image under d is ZES), an FS model defining the same process as X is 

obtained by assigning to every state of Z’(z) the same transition probabilities as those 

at the corresponding state of S. These probabilities are also denoted by p(. Is), s~Z’(z). 

Using this new model to define the process, we can proceed as in (13) to obtain for 

every xi EAT 

lOgP(X’;;X)=i C 1 Fi(SU)lOgp(UlS) 
SOZ’(Z) asA 

di C C Fi(SCI)lOgp(alS)+ia~A P^i(Za)lOgP^i(alZ). (22) 
sGZ’(z)-{r] as‘4 

The computation of P^i(sa), s # z, in (22) involves the number of occurrences of s in the 

sequence of states generated by xi and M’(z). By the definition of the merging process 

that leads to M’(z), this number may differ from the number of occurrences of the 

corresponding state with M. However, p(al s), UEA, depends only on the state of 

S determined by the refinement function, and the number of occurrences of this state is 

the same in both cases. Furthermore, the number of occurrences of z with the 

machines F and M’(z) is the same. Therefore, by the definition of di( .), it can be 
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readily seen that (22) takes the form 

lOgP(X~;%)<i 1 C Fi(Sa)lOgp(UIS) 

seZ-Z,(z) neA 

+i C C P^i(sa)logP^i(aIs)-_Ai(z). (23) 
ssZ,(z) neA 

Now, given x’; and z, consider a ‘semi-empirical’ FS model defined by the machine M, 
in which the empirical transition probabilities gathered from xi are assigned to the 

states of Z,(z), and the true (unknown) transition probabilities extended from S as 

above are used for the other states of Z. Denote by QXY( .) the probability measure 

induced over A’ by this model. As a result, in this semi-empirical model the transition 

probabilities are p( .j.s) for every SEZ -Z,(z) and P^i( .Is) for every size. Conse- 

quently, we can rewrite (23) as 

lOgP(Xl; ~)~lOgQ,;(xl)-i d,(z). 

Hence, proceeding as in (14) 

P,(i)<2_ ZCa(q~k)y(z)log(i+l)/(q-k+l) 
,,4,< Q&l;) 

=(i+ l)- 
ZCa(q-k)q(z)/(q-k+I) 

.z, Qx;(xl;). 
1 

(24) 

To upper-bound the sum on the right-hand side of (24) using the method of types, we 

define the q(z) x CI matrix W(xi) whose entries are ,Ui(sa), size, UEA. The set 

TIM, =(xi) of all sequences in A’ having the same matrix W(. ) as that of xi is referred to 

as the (M, z)-type of xi. Note that T(x’;) c T,, =(xI;), where T(x’;) denotes the FS-type 

of x’; relative to M, defined previously. Note further that Q,;(xi)=Q,;(x\) for every 

Y’;ET~,SX~). Letr,,. denote the set of distinct (M, z)-types. Proceeding as in (15) and 

(16), (24) implies 

P ( 2Cct(q-k)q(z))/(q~k+/)+~q(z) z (i)<(i+ 1)(-2Cr(q~k)q(z))l(q_kf1) lrM .: 1 <(i+ 1) - 

Hence, by (21), 

PM(i)< c (i+ 1)(~2Ca(q~k)q(z))l(q-“+I)+aq(z) 

zeS(Z) 

Now, since each of the 1 states of S(Z) corresponds to at least two states of Z after the 

refinement, we have q> k+ 1. In addition, by the definition of S(Z), q(z)32 for every 

zcS(Z). Consequently, the left-hand side of (25) can be further upper-bounded by 

P,(i)<k.(i+ l)-z”‘c-“. 
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have C = 1 + 0.5~ (1 + E) some 

Discussion 

In 2 and the definition a measure complexity in predictive way 

means of (6) and induces a of probability Ji(X,+ 1 

where ei( is given (4), and is the at time i, that evolves recursively 

according to the machine F(i) defined in (7). Each distribution depends only on the 

past outcomes. Thus, this sequence defines a random process U(X;) by assigning 

u(x;)=2MxY, n= 1 2 > ,..., 

which satisfies the marginality condition 

0;A LJ(x? a)= U(G). 

By Theorem 1, for any FS process P(X”,; 55) defined by an FS model ?Z with k states, 

we have 

On the other hand, (Rissanen, 1986b, Theorem l), the right-hand side is, for every 

process U( .) and almost every FS process P( .), also a lower bound (up to an O(n-‘) 

term) on the per-symbol average given by the left-hand side. Therefore, U( .) is 

a universal process for the class of FS processes, in the sense that it is as ‘close’ as 

possible to all the processes in the class. An upper bound similar to (26) also holds in 

the almost sure sense. This can be shown by using (5), Lemma 3, the Borel-Cantelli 

lemma, and the asymptotic equipartition property. 

Note that although U( .) is not an FS process itself, it is generated by a sequence of 

FS distributions ii( .I.). Hence, we call it a universal finite-state-generated process. 

Although ‘pointwise’ universal processes (in the sense that (26) holds for every 

individual sequence x’j rather than only on the average) can be obtained (Weinberger 

et al., 1993a), these are not FS-generated. In other words, the ‘plug-in’ approach of 

estimating the best FS model fitting the data string, and then using it to assign 

a conditional probability to the next symbol, fails in the pointwise case. 

The idea of a universal process goes back to Kolmogorov (1965) and Solomonoff 

(1964), who proved the existence of such process for the class of all recursively 

enumerable measures. However, their universal measure turns out to be noncomput- 

able and, hence, cannot be used in the solution of sequential decision problems. By 
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constraining the class of models to be finite state (which represents a huge class by 

itself), we obtained a universal computable process U( .). But since the complexity of 

the minimizing step (7) needed to compute U(x;) is enormous due to the size of the 

class, we still remain at the same level of only theoretically appealing results. The 

situation changes when we further constrain the models to possess a finite-memory 

property. In this case, a relatively simple algorithm (the so-called Context algorithm) 

is shown to generate a universal process (Weinberger et al., 1993b). An immediate 

application is a universal data compression system, but it can also be used for 

sequential prediction and, more generally, to make universal sequential decisions on 

the future outcomes of the observed sequence, as in the gambling (Feder, 1991) 

problem. 

Appendix 

Proof of Lemma 4. Let R = ( V, v, r, zo(R)) be a common refinement (Feder et al., 1992) 

of F=(S, k,J; zo) and M=(Z, q, m, z,(M)). Denote by g( .) and d( .) the functions 

defining F and M, respectively, from R. It can be readily seen that there exists such 

a refinement (think of the machine defined by the Cartesian product of F and M). 

Consequently, k < v < qk. Clearly, 

P{x&4’: H(xQM)-H(x’;IF)<s;Xj 

~P{x~EA’:E?(x~IF)-H(x~;IR)~E;~^) 

+P{x’;d: E?(x’;IM)-t?(xlIR)d2~;~} ‘P(E,)+P(E,). 

Hence, it suffices to show (19) for P(E,) and P(E,) separately. Note that the graph 

corresponding to the FS machine R is not necessarily irreducible, for z,(R) might be 

a transient state. However, the arguments used in the proof of the overestimation 

bound in the first part of Theorem 1 are equally valid for R. Proceeding as in (14)-( 16) 

we obtain 

P(E,)<2_‘“lr,l<(i+ l)a@2_iE. 

Consequently, (19) holds for P(E,) for every E >O. As for P(E,), we proceed as follows. 

For every ZE V, let l’,(z) and V,(z) denote the sets of states Z’E V such that 

d(z’)=d(z) and g(z’)=g(z), respectively, and define a parameter vector 8* for R by 

~(a lz)= ~(alg(z)). In other words, p( .lz) is extended to R by making it constant over 

VF(z), so that X and (R, /?*) A 9 define the same process. To upper-bound the 

probability of El, we consider S? as the actual model, and we use techniques from the 

theory of large deviations as applied to Markov chains; in particular, a well-known 

lemma due to Csiszar et al. (1987), Lemma 2(a). This lemma requires that the error 

event be given in terms of a set of probability distributions such that it includes 
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a certain empirical distribution derived from x’; E E2. Consider the two-dimensional 

probability distribution Pi(. ,.) over VX V defined by 

Pi(Z, S) ~ 
P^i(za) if s A r(z, a), some aEA, 
o 

otherwise. 

In general, the marginals of this distribution are not equal. For a distribution Q(. , .) 

over Vx V, let Q( .) denote its left marginal, and define 

q(slz) 4i QF) - s,z~R, Q(z)#O. 
Q(Z) ' 

Further, let 

q(s~d(z))~~‘~‘v~~” 
Q(z'>4 

c z’E”MM(Z) Q(z’) ’ S3ZE v, 
Jz, Q(z’)#O. 

Note that q(. 1 d(z)) is constant over VM(z). Finally, let r denote the set of distributions 

over V x V defined by 

Q(.,.)E~ iff s(Q)A 1 Q(z,s)log&<2s. 
S,ZEV 

Clearly, s(Q)>0 for every distribution Q. By the definitions of E2 and fi(xi, I.), it 

follows that x~EE~ if and only if Pi(. ,.)~r or, equivalently, 

Denote by To the set of distributions belonging to the closure of r (relative to the set 

of all distributions over V x V) and for which the two marginals are identical. By the 

above-mentioned large deviations lemma we then obtain 

where 

limsupflogP{Pi(-;)ET;W}~ -D, 
i-cc 

and 

D A min D(Q lIP) 
QEI-0 

(We use the conventions 0 log 0 A 0 log O/O A 0 and log h/O A cc if h > 0.) Clearly, p(z 1 s) 

is unambiguously determined by ~(a Is) for SEA. Note that, by the definition of r, D is 
independent of i, so in order to complete the proof of Lemma 3 it suffices to show that 

there exists 6 > 0 such that if E < 6 then D # 0. 
Let Q*ET~ be such that s(Q*) is minimum under the constraint D(Q*IIP)=O 

(clearly, this minimum is attained). Define 6 g s(Q*)/2. Taking E<S we obtain D #O. 
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Hence, it suffices to show that s(Q*)#O. Clearly, D(Q* II P)=O implies that 

q*(slz)=P(slz) so 

Consequently, &(Q*) = 0 if and only if p(slz) = q*(sld(z)) for every s, ZE I/ such that 

Q*(z) # 0. Thus, in this case p( .lz) must be constant not only over V,(z) (which holds 
- 

by definition) but also for those states z’ of VM(z) for which Q*(z’)#O. Next, this 

property is used to define a vector of transition probabilities for M. Note that, in 

particular, if 3 is an ergodic FS model with stationary distribution P”( .), then for 

every s,z~V’ we have Q*(z,s)=P’(z)p(s/ ) z and Q*(z)=P’(z)#O. However, in the 

general case we might have Q*(z) =0 for some ZE V, and we overcome this difficulty by 

using a well-known result in the theory of Markov chains (Cox and Miller, 1967, 

pp. 99-100) stating that there exists a closed (irreducible) subset V’ of P’ such that 

Q*(z)#O for every ZE V”. By the ergodicity of F and M, for every UES and every WEZ 

there exist z, Z’E V’ such that u =g(z) and w = d(z’). Hence, if c(Q*)= 0 we can define 

a vector of transition probabilities t(al w), SEA, WEZ, given by t(al w)=p(a)z), where 

w =d(z), ZE V’. Now, let ZE I/” be such that g(z) is the actual initial state z,, of the source 

(in case Q*(z,(R)) #O we may take z = z,(R)), and consider a machine M’ identical to 

M, except that the initial state is d(z) (if z =z,(R) then M = M’). It follows that M’, 
together with the vector of probabilities t(. I .), defines the same process as 2 and, 

consequently, the same as X. In addition, since M is not a refinement of F, and their 

next-state functions are assumed to differ by more than a permutation, 

permutation of F. This either the minimality of F or 

Lemma 1, and the proof is complete. 0 
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